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Abstract

Three-dimensional (3-D) free vibration of cantilevered thick skew plates is analyzed, based on the exact, linear and

small-strain elasticity theory. The skew domain of the plate is mapped onto a cubic domain. A set of triplicate Chebyshev

polynomials multiplied by a boundary function is developed as the trial functions of each displacement components. Using

the Ritz method, the eigenvalue equation is derived from the strain energy and kinetic energy of the plate. The vibration

modes are divided into the antisymmetric and symmetric ones in the thickness direction, therefore, can be studied

individually. The convergence study shows that the first eight frequency parameters for each mode categories can be

obtained with an accuracy of at least four significant figures. The effect of geometric parameters, such as skew angle, aspect

ratio and span-thickness ratio, on frequency parameters is studied. The results are compared with those obtained by using

the algebraic polynomials as trial functions and the 3-D finite element solutions, respectively. It is shown that the

Chebyshev polynomials can provide better numerical stability than the algebraic polynomials, especially for the plates with

large skew angle. The present results can serve as the benchmark data for the accuracy evaluation of other computational

techniques.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

There are numerous papers published on static and dynamic analysis of plates with various shapes, most of
which were performed by using two-dimensional (2-D) theories such as the classical theory [1] for thin plates,
Mindlin theory [2] for moderate thickness plates and high-order theories [3] for thick plates.

In engineering applications, skew plates are frequently used as structural components such as the swept
wings, skew bridges and building floors. Their vibration characteristics are obviously important for designers.
Since the early 1950s, a lot of studies on the vibration of skew plates have been performed [4–12]. However,
most of the studies followed the classical plate theory, applicability of which is subjected to a serious limitation
on the plate thickness. In such a case, inaccuracies of results rapidly increase with the increases of the plate
thickness. Moreover, corner stress singularities inevitably occur at the obtuse corners and become significant
to the vibration analysis with increasing corner angle due to the simplifying representations of the physical
problems. For plates with large skew angle, accurate results can be obtained when the conventional trial
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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functions are augmented by sets of corner functions [13,14]. Moreover, some investigates on vibration of skew
plates with moderate thickness, based on Mindlin plate theory, have also been carried out [15–17].

Three-dimensional (3-D) analysis of plates has long been a goal for researchers who work in this field. Such
an analysis not only provides realistic results but also allows further physical insights, which cannot otherwise
be predicted by the 2-D analysis [18,19]. In the recent three decades, some attempts have been made for 3-D
vibration analysis of thick plates. Srinivas et al. [20] derived the exact 3-D elasticity solution for free vibration
of rectangular plates with all edges simply supported. Hutchinson and Zillmer [21] and Fromme and Leissa
[22] developed the respective series solutions to analyze the free vibration of completely free parallelepiped.
Furthermore, Leissa and Zhang [23] used the Ritz method to study the 3-D free vibration of cantilevered
rectangular parallelepiped and Cheung and Chakrabarti [24] developed the finite layer method to study the
vibration of thick rectangular plates with general boundary conditions. In the recent 10 years, some new
advances on 3-D vibration analysis of thick plates have been achieved. Malik and Bert [25] and Liew and Teo
[26] used the differential quadrature method to analyze the 3-D vibration characteristics of rectangular plates.
Zhou et al. [27] used the Chebyshev polynomials and Liew et al. [28] used the orthogonal polynomials as trial
functions in the Ritz method to analyze such plates. Moreover, the Ritz method has been extended to
investigate the 3-D vibration of plates with other shapes such as triangular plates [29], cantilevered skewed
plates [30] and cantilevered trapezoids [31]. Scanning the published literature, one can find that the research on
3-D vibration analysis of skew plates is very limited. Only cantilevered skew plates [32] and fully simply
supported skew plates [33] have been investigated.

McGree and Leissa [30] presented the first known solutions of 3-D free vibration for cantilevered skew
plates by using the Ritz method. They used a set of triplicate algebraic polynomials as the trial functions,
which geometrically satisfies the fixed face conditions. Their results were compared with those obtained by
using the 3-D finite elements. It is shown that in some cases, a remarkable disagreement of natural frequencies
can be observed between the two methods.

In the present study, the skew domain of the plate is mapped onto a cubic domain and a set of triplicate
Chebyshev polynomials multiplied by a boundary function satisfying the geometric boundary conditions of
the plates are taken as the trial functions in the Ritz method. Rapid convergence, high accuracy and excellent
numerical robustness have been demonstrated. Reliable numerical results have been given for plates with
different aspect ratios, span-thickness ratios and skew angles. The results are compared with those obtained by
using the algebraic polynomials as trial functions and those obtained by using the 3-D finite elements [30]. It is
shown that the present solutions are in agreement with the 3-D finite element solutions for all cases; they
however, are different from the algebraic polynomial solutions when the plates are with large skew angles.

2. Theoretical formulation

Consider a skew plate with side lengths a and b, thickness t, and skew angle a with respect to the axis y, as
shown in Fig. 1(a). The plate is defined in a right-handed orthogonal coordinate system (x, y, z). The top and
bottom surfaces of the plate parallel to the reference median plane x–y. Based on the 3-D, linear and small-
strain elasticity theory, the strain energy V̄ and the kinetic energy T̄ of the plate undergoing a small amplitude
vibration are given by the volume integrals

V̄ ¼ ð1=2Þ

ZZZ
½lð�x þ �y þ �zÞ

2
þ 2Gð�2x þ �

2
y þ �

2
zÞ þ Gðg2xy þ g2yz þ g2zxÞ�dxdydz,

T̄ ¼ ðr=2Þ
ZZZ

ð _uþ _vþ _wÞdxdydz, ð1Þ

where r is a constant mass per unit volume; u ¼ uðx; y; z; tÞ, v ¼ vðx; y; z; tÞ and w ¼ wðx; y; z; tÞ are
displacement components in the x, y and z directions, respectively; _u, _v and _w are their corresponding velocity
components, which are, respectively, the derivatives of each displacement components with respect to the time
variable t. l and G are the Lamè constants for a homogeneous and isotropic material, which are expressed in
terms of Young’s modulus E and the Poisson’s ratio n by

l ¼ nE=½ð1þ nÞð1� 2nÞ�; G ¼ E=½2ð1þ nÞ�. (2)
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Fig. 1. Geometry, dimensions, coordinates and domain transformation: (a) skew plate and (b) cubic domain.
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In Eq. (1), the linear strain–placement relations are given by

�x ¼ qu=qx; �y ¼ qv=qy; �z ¼ qw=qz,

gxy ¼ qv=qxþ qu=qy; gyz ¼ qw=qyþ qv=qz; gzx ¼ qu=qzþ qw=qx. (3)

The skew domain of the plate can be mapped onto a basic cubic domain, as shown in Fig. 1(b), using the
following coordinate transformation:

x ¼ aðxþ Z sin a=bþ 1þ sin a=bÞ=2; y ¼ bðZþ 1Þ cos a=2; z ¼ tz=2, (4)

where b ¼ a/b is the side-length ratio of the plate. Applying the chain rule of differentiation, the relation of the
first derivative in the two coordinate systems x– y– z and x– Z– z can be expressed as

qðÞ
qx
qðÞ
qy

8>><
>>:

9>>=
>>; ¼ J̄

�1

qðÞ
qx
qðÞ
qZ

8>>><
>>>:

9>>>=
>>>;
;

qðÞ
qz
¼

t

2

qðÞ
qz

, (5)

where

J̄ ¼

qx

qx
qy

qx
qx

qZ
qy

qZ

2
6664

3
7775 ¼ a

2

1 0

sin a=b cos a=b

" #
, (6)

in which, J̄ denotes the Jacobian matrix of the geometrical mapping. Eqs. (5) and (6) will be used to transform
the integration in the x–y–z domain into those in the x–Z–z domain.

For free vibrations, the displacement components of a 3-D elastic body may be expressed as

u ¼ Uðx; Z; zÞeiot; v ¼ V ðx; Z; zÞeiot; w ¼W ðx; Z; zÞeiot, (7)

where o is the circular eigenfrequency of vibration and i ¼
ffiffiffiffiffiffiffi
�1
p

.
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Substituting Eqs. (3)–(7) into Eq. (1), the energy functional L̄ of the plate can be expressed as

L̄ ¼ V̄max � T̄max ¼
tb

4a
cos a

Z 1

�1

Z 1

�1

Z 1

�1

½lV̄ 1 þ GðV̄ 2 þ V̄ 3Þ�dxdZdz

�
abt

16
cos aro2

Z 1

�1

Z 1

�1

Z 1

�1

ðU2 þ V2 þW 2ÞdxdZdz, ð8Þ

where

V̄ 1 ¼ ðqU=qx� tan aqV=qxþ sec abqV=qZþ g qW=qzÞ2,

V̄ 2 ¼ 2ðqU=qxÞ2 þ 2ðtan a qV=qx� sec ab qV=qZÞ2 þ 2ðg qW=qzÞ2,

V̄ 3 ¼ ðtan a qU=qx� sec ab qU=qZ� qV=qxÞ2

þ ðg qV=qz� tan a qW=qxþ sec ab qW=qZÞ2 þ ðqW=qxþ g qU=qzÞ2, ð9Þ

in which, g ¼ a/t is referred as to the span-thickness ratio of the plate.
In the present analysis, the displacement functions U, V and W of the plates are approximately expressed in

terms of a finite triplicate series:

Uðx; Z; zÞ ¼ ð1þ xÞ
XI

i¼1

XJ

j¼1

XK

k¼1

AijkF iðxÞFjðZÞFkðzÞ,

V ðx; Z; zÞ ¼ ð1þ xÞ
XL

l¼1

XM
m¼1

XN

n¼1

BlmnFlðxÞF mðZÞFnðzÞ,

W ðx; Z; zÞ ¼ ð1þ xÞ
XP

p¼1

XQ

q¼1

XR

r¼1

CpqrF pðxÞFqðZÞFrðzÞ, ð10Þ

where Aijk, Blmn and Cpqr are undetermined coefficients, 1+x refers to as the boundary function which ensures
the exact satisfaction of the geometric boundary conditions of the cantilevered skew plates. The series
functions have an identical form: Fs(w) ðs ¼ i; j; k; l;m; n; p; q; r and w ¼ x; Z; zÞ which are a set of Chebyshev
polynomials defined in the interval [�1, 1], expressed by

FsðwÞ ¼ cos½ðs� 1Þ arccosðwÞ�; s ¼ 1; 2; 3; : . . . (11)

The first five Chebyshev polynomials are given in Fig. 2. It should be noted that selecting Chebyshev
polynomial series as the trial functions of displacement components has three distinct advantages [33]. The
first advantage is that Fs(w) (s ¼ 1, 2, 3, y) is a set of complete and orthogonal series in the interval [�1, 1].
This ensures the triplicate series FiðxÞF jðZÞFkðzÞ (i, j, k ¼ 1, 2, 3, y) to form a complete and orthogonal set in
the cubic domain. It is obvious that the boundary function destroys the orthogonality of the admissible
functions. The main properties of Chebyshev polynomials, such as the numerical robustness in computations,
are still preserved in the admissible functions because the boundary function is invariable in sign. The second
advantage is that Chebyshev polynomials have the more rapid convergence and better numerical robustness
than other polynomial series such as simply polynomials. The third advantage is that Fs(w) (s ¼ 1, 2, 3,y) can
be expressed into a unified form of cosine functions, which could reduce the coding effort.

Substituting Eqs. (9) and (10) into Eq. (8), and minimizing L̄ with respect to the undetermined coefficients
Aijk, Blmn and Cpqr, a set of eigenfrequency equations is derived, which can be written in matrix form as

½Kuu� ½Kuv� ½Kuw�

½Kuv�
T ½Kvv� ½Kvw�

½Kuw�
T ½Kvw�

T ½Kww�

2
64

3
75� L2

Muu 0 0

0 Mvv 0

0 0 Mww

2
64

3
75

0
B@

1
CA
fAg

fBg

fCg

8><
>:

9>=
>; ¼

f0g

f0g

f0g

8><
>:

9>=
>;, (12)
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Fig. 2. The first five terms of the Chebyshev polynomials Fs(w) (s ¼ 1, 2, 3, 4, 5).

Table 1

The convergence of the first eight frequency parameters for the antisymmetric modes in the thickness direction, a ¼ 301 and b ¼ 1

I� J�K O1 O2 O3 O4 O5 O6 O7 O8

g ¼ 100/3

10� 10� 2 3.930 9.336 25.12 25.75 40.77 50.00 71.36 72.28

10� 10� 3 3.930 9.336 25.12 25.75 40.77 50.00 71.36 72.28

13� 13� 1 4.243 9.633 26.11 27.51 42.87 53.72 75.44 76.06

13� 13� 2 3.923 9.319 25.06 25.71 40.69 49.91 71.19 72.17

13� 13� 3 3.923 9.319 25.06 25.71 40.69 49.91 71.19 72.17

16� 16� 2 3.919 9.311 25.04 25.70 40.66 49.88 71.13 72.12

16� 16� 3 3.919 9.311 25.04 25.70 40.66 49.88 71.13 72.12

19� 19� 1 4.241 9.626 26.09 27.50 42.85 53.70 75.38 75.99

19� 19� 2 3.918 9.308 25.03 25.70 40.66 49.87 71.11 72.11

22� 22� 1 4.241 9.626 26.09 27.49 42.85 53.69 75.38 75.98

22� 22� 2 3.917 9.307 25.03 25.69 40.65 49.87 71.09 72.10

22� 22� 3 3.917 9.307 25.03 25.69 40.65 49.87 71.09 72.10

25� 25� 2 3.917 9.307 25.03 25.69 40.65 49.87 71.09 72.10

g ¼ 10/3

7� 7� 4 3.578 7.254 16.26 18.59 25.27 30.62 36.46 39.41

7� 7� 5 3.578 7.254 16.26 18.59 25.27 30.62 36.46 39.41

9� 9� 3 3.571 7.248 16.24 18.58 25.26 30.60 36.41 39.32

9� 9� 4 3.571 7.247 16.24 18.58 25.26 30.60 36.40 39.32

9� 9� 5 3.571 7.247 16.24 18.58 25.26 30.60 36.40 39.32

11� 11� 4 3.568 7.245 16.23 18.57 25.25 30.59 36.39 39.31

11� 11� 5 3.568 7.245 16.23 18.57 25.25 30.59 36.39 39.31

13� 13� 3 3.567 7.245 16.23 18.58 25.26 30.59 36.39 39.31

13� 13� 4 3.566 7.244 16.23 18.57 25.25 30.59 36.38 39.30

15� 15� 3 3.566 7.245 16.23 18.58 25.26 30.59 36.39 39.31

15� 15� 4 3.565 7.243 16.23 18.57 25.25 30.59 36.38 39.30

15� 15� 5 3.565 7.243 16.23 18.57 25.25 30.59 36.38 39.30

17� 17� 4 3.564 7.243 16.23 18.57 25.25 30.59 36.38 39.30

19� 19� 4 3.564 7.243 16.23 18.57 25.25 30.59 36.38 39.30

D. Zhou et al. / Journal of Sound and Vibration 313 (2008) 134–148138
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in which L ¼ oa
ffiffiffiffiffiffiffiffiffi
r=E

p
, ½Kij� and ½Mii�ði; j ¼ u; v;wÞ are the sub-stiffness matrices and the sub-mass

matrices, respectively. {A}, {B} and {C} are the column vectors of the unknown coefficients which are
expressed as

fAg ¼

A111

A112

..

.

A11K

A121

..

.

A12K

..

.

A1JK

..

.

AIJK

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

; fBg ¼

B111

B112

..

.

B11N

B121

..

.

B12N

..

.

B1MN

..

.

ALMN

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

; fCg ¼

C111

C112

..

.

C11R

C121

..

.

C12R

..

.

C1QR

..

.

CPQR

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

. (13)
Table 2

The convergence of the first eight frequency parameters for the symmetric modes in the thickness direction, a ¼ 301 and b ¼ 1

I� J�K O1 O2 O3 O4 O5 O6 O7 O8

g ¼ 100/3

10� 10� 2 73.67 163.5 210.4 303.6 338.6 399.7 446.6 500.5

10� 10� 3 73.67 163.5 210.4 303.6 338.6 399.7 446.6 500.5

13� 13� 2 73.54 163.5 210.2 303.6 338.5 399.7 446.4 500.5

13� 13� 3 73.54 163.5 210.2 303.6 338.5 399.7 446.4 500.5

16� 16� 1 73.49 163.5 210.1 303.6 338.5 399.7 446.4 500.5

16� 16� 2 73.48 163.5 210.1 303.5 338.5 399.7 446.3 500.5

16� 16� 3 73.48 163.5 210.1 303.5 338.5 399.7 446.3 500.5

19� 19� 1 73.46 163.5 210.1 303.6 338.5 399.7 446.3 500.5

19� 19� 2 73.45 163.5 210.0 303.5 338.5 399.7 446.3 500.5

22� 22� 1 73.45 163.5 210.0 303.6 338.5 399.7 446.3 500.5

22� 22� 2 73.44 163.5 210.0 303.5 338.5 399.7 446.2 500.5

22� 22� 3 73.44 163.5 210.0 303.5 338.5 399.7 446.2 500.5

25� 25� 2 73.44 163.5 210.0 303.5 338.5 399.7 446.2 500.5

g ¼ 10/3

7� 7� 4 7.436 16.37 21.14 30.34 33.86 39.91 44.61 49.96

7� 7� 5 7.436 16.37 21.14 30.34 33.86 39.91 44.61 49.96

9� 9� 3 7.410 16.37 21.11 30.34 33.84 39.89 44.56 49.91

9� 9� 4 7.409 16.37 21.10 30.34 33.84 39.89 44.55 49.91

9� 9� 5 7.409 16.37 21.10 30.34 33.84 39.89 44.55 49.91

11� 11� 4 7.397 16.37 21.09 30.34 33.83 39.89 44.54 49.91

11� 11� 5 7.397 16.37 21.09 30.34 33.83 39.89 44.54 49.91

13� 13� 3 7.392 16.37 21.08 30.34 33.83 39.89 44.53 49.91

13� 13� 4 7.391 16.37 21.08 30.34 33.83 39.89 44.53 49.90

15� 15� 3 7.388 16.37 21.07 30.34 33.83 39.89 44.52 49.90

15� 15� 4 7.388 16.37 21.07 30.34 33.83 39.89 44.52 49.90

15� 15� 5 7.388 16.37 21.07 30.34 33.83 39.89 44.52 49.90

17� 17� 4 7.386 16.37 21.07 30.34 33.83 39.89 44.52 49.90

19� 19� 4 7.386 16.37 21.07 30.34 33.83 39.89 44.52 49.90
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Every elements in sub-matrices [Kij] and [Mii] ði; j ¼ u; v;wÞ are given by

½Kuu� ¼ ½ð1� nÞ=ð1� 2nÞ þ tan2 a=2�E11
uiuī

G00
ujuj̄

H00
ukuk̄
þ b2 sec2 aE00

uiuī
G11

ujuj̄
H00

ukuk̄
=2

� b tan a sec aðE10
uiuī

G01
ujuj̄
þ E01

uiuī
G10

ujuj̄
ÞH00

ukuk̄
=2þ g2E00

uiuī
G00

ujuj̄
H11

ukuk̄
=2,

½Kvv� ¼ b2 sec2 að1� nÞE00
vlvl̄

G11
vmvm̄H00

vnvn̄=ð1� 2nÞ þ g2E00
vlvl̄

G00
vmvm̄H11

vnvn̄=2

þ ½tan2 að1� nÞ=ð1� 2nÞ þ 0:5�E11
vlvl̄

G00
vmvm̄H00

vnvn̄

� b tan a sec að1� nÞðE10
vlvl̄

G01
vmvm̄ þ E01

vlvl̄
G10

vmvm̄ÞH
00
vnvn̄=ð1� 2nÞ,

½Kww� ¼ g2ð1� nÞE00
wpwp̄G00

wqwq̄H11
wrwr̄=ð1� 2nÞ þ b2 sec2 aE00

wpwp̄G11
wqwq̄H00

wrwr̄=2

�ð1þ tan2 aÞE11
wpwp̄G00

wqwq̄H00
wrwr̄=2� b tan a sec aðE10

wpwp̄G01
wqwq̄ þ E01

wpwp̄G10
wqwq̄ÞH

00
wrwr̄=2,

½Kuv� ¼ b sec a½nE10
uivl̄

G01
ujvm̄=ð1� 2nÞ þ E01

uivl̄
G10

ujvm̄=2�H
00
ukvn̄ � tan a½n=ð1� 2nÞ þ 0:5�E11

uivl̄
G00

ujvm̄H00
ukvn̄,

½Kuw� ¼ g½nE10
uiwp̄H01

ukwr̄=ð1� 2nÞ þ E01
uiwp̄H10

ukwr̄=2�G
00
ujwq̄,

½Kvw� ¼ bg sec a½nG10
vmwq̄H01

vnwr̄=ð1� 2nÞ þ G01
vmwq̄H10

vnwr̄=2�E
00
vlwp̄

� g tan a½nE10
vlwp̄H01

vnwr̄=ð1� 2nÞ þ E01
vlwp̄H10

vnwr̄=2�G
00
vmwq̄,
Table 3

The first eight frequency parameters for skewed, cantilevered thick plates with aspect ratio b ¼ 0.5 and span-thickness ratio g ¼ 1

Mode Method a ¼ 01 a ¼ 151 a ¼ 301 a ¼ 451

O1 Present 2.2201 2.2585 2.3617 2.5155

Ref. [30] 2.2304 2.2987 2.5790 3.1205

3-D FE 2.2375 2.2757 2.3791 2.5398

O2 Present 2.7073 2.7453* 2.7636* 2.6103*

Ref. [30] 2.7039 2.8662 3.3293 4.1110

3-D FE 2.6884 2.7535 2.7861 2.6920

O3 Present 2.7239* 2.7899 3.0815 3.5952

Ref. [30] 2.7577 2.8973 3.4345 4.8256

3-D FE 2.7289 2.7675 3.0452 3.4531

O4 Present 4.4629 4.5038 4.5654 4.4254

Ref. [30] 4.7438 4.8997 5.3477 6.6697

3-D FE 4.2550 4.2921 4.3260 4.3008

O5 Present 5.0539* 4.8523* 4.6032* 4.5860*

Ref. [30] 5.0722 5.0376 5.4416 6.8077

3-D FE 5.0096 4.8003 4.5566 4.5895

O6 Present 5.5551* 5.5318 5.3506 5.5869

Ref. [30] 5.5855 5.8947 6.6160 8.1640

3-D FE 5.5375 5.1834 5.0861 5.3187

O7 Present 5.5813* 5.6596* 6.0684* 6.4360*

Ref. [30] 5.5932 5.9298 7.1205 9.7608

3-D FE 5.5698 5.8741 5.9334 5.4364

O8 Present 5.7101 5.8757* 6.3335* 6.8575*

Ref. [30] 5.8219 6.1000 7.3500 10.0930

3-D FE 5.7046 5.7498 6.1511 6.5378

Note: Data with superscript (*) mean the symmetric modes in the thickness direction.
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½Muu� ¼ ð1þ nÞE00
uiuī

G00
ujuj̄

H00
ukuk̄

=4,

½Mvv� ¼ ð1þ nÞE00
vlvl̄

G00
vmvm̄H00

vnvn̄=4,

½Mww� ¼ ð1þ nÞE00
vpvp̄G00

vqvq̄H00
wrwr̄=4, ð14Þ

in which

Eys
tsBs̄ ¼

Z 1

�1

fdy½ð1þ xÞF sðxÞ�=dx
y
gfds½ð1þ xÞFs̄ðxÞ�=dx

s
gdx,

Gys
tsBs̄ ¼

Z 1

�1

½dyF sðZÞ=dZygfd
sF s̄ðZÞ=dZs�dZ,

Hys
tsBs̄ ¼

Z 1

�1

½dyF sðzÞ=dz
y
�½dsF s̄ðzÞ=dz

s
�dz,

y;s ¼ 0; 1; t; B ¼ u; v;w; s ¼ i; j; k; l;m; n; p; q; r,

s̄ ¼ ī; j̄; k̄; l̄; m̄; n̄; p̄; q̄; r̄. ð15Þ

A non-trivial solution can be obtained by setting the determinant of the coefficient matrix in Eq. (12) equal
to zero. Roots of the determinant are the square of the eigenvalue L (dimensionless eigenfrequency).
Eigenfunctions, i.e. mode shapes, corresponding to every eigenvalues could be determined by back-
substitution of the eigenvalues, one by one, in the usual manner.
Table 4

The first eight frequency parameters for skewed, cantilevered thick plates with aspect ratio b ¼ 0.5 and span-thickness ratio g ¼ 2.5

Mode Method a ¼ 01 a ¼ 151 a ¼ 301 a ¼ 451

O1 Present 3.1201 3.2169 3.4755 3.8085

Ref. [30] 3.1227 3.2166 3.5510 4.1425

3-D FE 3.1238 3.2217 3.4885 3.8582

O2 Present 4.2737 4.4007 4.9113 6.2795

Ref. [30] 4.2261 4.3542 5.0753 7.1414

3-D FE 4.2821 4.4073 4.9183 6.2958

O3 Present 6.7831* 6.8335* 6.8679* 6.4618*

Ref. [30] 6.8552 7.2038 8.2730 10.2007

3-D FE 6.7974 6.8581 6.9365 6.6924

O4 Present 7.4367 7.5818 8.0905 9.2646

Ref. [30] 8.0642 8.3654 9.3562 11.4351

3-D FE 7.3213 7.4760 8.0192 9.2653

O5 Present 12.6109* 12.1137* 11.4863* 11.4371*

Ref. [30] 12.6494 12.5656 13.3447 16.6312

3-D FE 12.5705 12.0459 11.4246 11.5383

O6 Present 12.6290 12.7055 13.0946 13.6847

Ref. [30] 12.9342 12.9723 14.7501 18.9970

3-D FE 12.9816 12.3409 12.7782 13.3430

O7 Present 13.0500 13.3018 13.6728 14.2504

Ref. [30] 13.5239 14.3488 17.1083 22.5717

3-D FE 13.3094 13.1870 13.5041 14.2523

O8 Present 13.9514* 14.1777 15.2067* 16.1010*

Ref. [30] 13.9620 14.7390 17.7850 24.5030

3-D FE 14.4315 14.3078 15.1933 16.7757

Note: Data with superscript (*) mean the symmetric modes in the thickness direction.
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It can be seen from Fig. 2 that the Chebyshev polynomials is symmetric for s ¼ 1, 3, 5, y and
antisymmetric for s ¼ 2, 4, 6, y . Therefore, the symmetric and antisymmetric modes of skew plates in the
thickness direction can be individually studied, which reduces the computational cost.
3. Convergence study

It is well known that the Ritz method provides the upper bound of eigenfrequencies. The efficiency of the
method depends on the type of trial functions adopted in the analysis. Solution of any accuracy could be
obtained theoretically by using sufficient number of terms of trial functions. However, a limit to the number of
terms of trial functions always exists because of the limited speed, the capacity and the numerical accuracy of
computers. In the 3-D analysis of elastic bodies, numerical instability would occur when a great number
of terms of trial functions are used, especially in the case of the triplicate series having to be used. In the
dynamic analysis, a typical numerical instability is the ill-conditioned eigenvalues, the earlier or later
occurrence of which is concerned with the trial functions used in the calculation. Therefore, the validity of a
Ritz solution often is enslaved to the convergence rate, the numerical stability and the accuracy of the method.

A convergence study is performed for eigenfrequencies of cantilevered skew plates with the aspect ratio
b ¼ 1 (rhombic) and skew angle a ¼ 301. For simplicity, the same number of Chebyshev polynomials in each
displacement components U, V and W are used, though more efficient computation can be achieved,
otherwise. This implies that I ¼ L ¼ P; J ¼M ¼ Q and K ¼ N ¼ R. Two different span-thickness ratios,
g ¼ 100/3 (corresponding to a thin plate) and g ¼ 10/3 (corresponding to a thick plate), are considered. The
computations are carried out in Pentium IV microcomputer with double precision and the integrals in Eq. (15)
Table 5

The first eight frequency parameters for skewed, cantilevered thick plates with aspect ratio b ¼ 1 and span-thickness ratio g ¼ 2

Mode Method a ¼ 01 a ¼ 151 a ¼ 301 a ¼ 451

O1 Present 2.9338 2.9936 3.1656 3.4266

Ref. [30] 2.9463 3.0096 3.3164 3.8412

3-D FE 2.9397 3.0017 3.1809 3.4554

O2 Present 4.3881* 4.4123* 4.4526* 4.3678*

Ref. [30] 4.4178 4.6232 4.6768 6.5555

3-D FE 4.3957 4.4244 4.4802 4.4421

O3 Present 5.1926 5.3058 5.7115 6.6142

Ref. [30] 5.1815 5.3635 6.1756 7.6914

3-D FE 5.1470 5.2527 5.6351 6.4876

O4 Present 10.5174* 10.2762* 9.8318* 9.3982*

Ref. [30] 10.5391 9.9399 11.3566 13.3667

3-D FE 10.5200 10.2640 9.8067 9.4300

O5 Present 10.9370 11.0326 11.2157 11.1608

Ref. [30] 10.9792 10.6450 13.5265 18.6951

3-D FE 10.7864 10.8493 10.9455 10.8145

O6 Present 11.7083* 12.0385* 12.6656* 12.9708*

Ref. [30] 11.7535 11.3436 13.5265 18.6951

3-D FE 11.6626 12.0043 12.6506 13.0694

O7 Present 14.5991 14.1467 14.0736 14.4686

Ref. [30] 14.4674 12.5292 14.3425 18.9918

3-D FE 14.3273 13.7176 13.6732 14.0382

O8 Present 15.0238 15.9727 17.2395 17.4823

Ref. [30] 16.1660 14.4180 15.9530 25.3940

3-D FE 14.4794 15.3277 16.5283 16.7953

Note: Data with superscript (*) mean the symmetric modes in the thickness direction.
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are numerically evaluated by the piecewise Gaussian quadrature of 24 points. Considering the conventional
usage in 2-D vibration analysis of plates, a standard dimensionless frequency parameter O ¼ oa2

ffiffiffiffiffiffiffiffiffiffiffi
rt=D

p
is

used where D ¼ Et3=½12ð1� n2Þ� is the flexural rigidity of the plate. In all the following computations, the
Poisson’s ratio is fixed at n ¼ 0.3. Tables 1 and 2 give, respectively, the convergence of the first eight frequency
parameters of antisymmetric and symmetric modes in the thickness direction with respect to the term numbers
of the Chebyshev polynomials. It is shown that 22� 22� 2 terms for the thin plate (g ¼ 100/3) and 17� 17� 4
terms for the thick plate (g ¼ 10/3) can give the results at least accurate to four significant figures. It can be
seen that with the increase of the plate thickness, the reducing number of terms of Chebyshev polynomials in
the median surface direction, which corresponds to the more number of terms of Chebyshev polynomials in
the thickness direction, should be used to obtain the satisfactory accuracy.
4. Numerical results

Based on the convergence study in the last section, the first eight frequency parameters of cantilevered skew
plates are reported in Tables 3–8, respectively. Six cases are considered: (a) plates with aspect ratio b ¼ 0.5 and
span-thickness ratio g ¼ 1; (b) plates with aspect ratio b ¼ 0.5 and span-thickness ratio g ¼ 2.5; (c) plates with
aspect ratio b ¼ 1 and span-thickness ratio g ¼ 2; (d) plates with aspect ratio b ¼ 1 and span-thickness ratio
g ¼ 5; (e) plates with aspect ratio b ¼ 2 and span-thickness ratio g ¼ 4; (f) plates with aspect ratio b ¼ 2 and
span-thickness ratio g ¼ 10. The results are compared with those reported in Ref. [30] where both the 3-D
algebraic polynomial solution and the 3-D finite element (MSC/NASTRAN CHEXA element, 14� 14� 3
mesh) were given.
Table 6

The first eight frequency parameters for skewed, cantilevered thick plates with aspect ratio b ¼ 1 and span-thickness ratio g ¼ 5

Mode Method a ¼ 01 a ¼ 151 a ¼ 301 a ¼ 451

O1 Present 3.3554 3.4519 3.7406 4.1970

Ref. [30] 3.3687 3.3989 3.7583 4.2809

3-D FE 3.3624 3.4650 3.7740 4.2679

O2 Present 7.3754 7.5250 8.0955 9.5775

Ref. [30] 7.3397 7.5411 8.2944 10.4206

3-D FE 7.3941 7.5446 8.1276 9.6755

O3 Present 10.9203* 10.9776* 11.0687* 10.8402*

Ref. [30] 10.9847 11.5005 11.8183 11.2917

3-D FE 10.9436 11.0146 11.1511 11.0507

O4 Present 17.7010 18.2223 19.7032 20.9666

Ref. [30] 17.6949 18.0708 20.3724 23.5901

3-D FE 17.6728 18.2053 19.7461 21.1558

O5 Present 22.5574 21.7277 21.4716 23.4716*

Ref. [30] 23.6885 21.9487 22.5723 27.4819

3-D FE 22.1487 21.4572 21.2757 23.5722

O6 Present 24.0371 25.6249* 24.5449* 23.7282

Ref. [30] 24.9997 25.5651 28.3452 33.4636

3-D FE 23.9502 25.6132 24.4965 23.6375

O7 Present 26.1985* 26.1574 30.8163 32.3017*

Ref. [30] 26.2343 26.3655 31.3633 43.8769

3-D FE 26.2278 25.9579 30.6623 32.6347

O8 Present 29.2842* 30.0741* 31.5920* 36.6317

Ref. [30] 29.3881 30.6082 33.8068 47.2720

3-D FE 29.1873 30.0154 31.6052 36.7692

Note: Data with superscript (*) mean the symmetric modes in the thickness direction.
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Table 7

The first eight frequency parameters for skewed, cantilevered thick plates with aspect ratio b ¼ 2 and span-thickness ratio g ¼ 4

Mode Method a ¼ 01 a ¼ 151 a ¼ 301 a ¼ 451

O1 Present 3.2609 3.3113 3.4570 3.6807

Ref. [30] 3.2545 3.2823 3.2943 3.3134

3-D FE 3.2667 3.3220 3.4865 3.7563

O2 Present 5.7835* 5.7217* 5.5015* 5.0137*

Ref. [30] 5.7869 5.8978 5.9928 6.6404

3-D FE 5.7970 5.7466 5.5692 5.2041

O3 Present 10.0470 10.2186 10.8031 11.9752

Ref. [30] 9.9090 9.8656 10.4693 11.0825

3-D FE 9.9270 10.0899 10.6543 11.8026

O4 Present 16.4511 16.6957 17.3625 18.2238

Ref. [30] 16.3311 16.3082 17.4151 19.7762

3-D FE 16.4537 16.7024 17.3983 18.3928

O5 Present 20.9414* 20.2754* 19.4367* 18.5919*

Ref. [30] 20.9459 20.9449 21.8063 25.7577

3-D FE 20.9648 20.2626 19.4645 18.9263

O6 Present 21.9394* 22.7351* 23.7968* 24.3095*

Ref. [30] 21.9266 23.5630 25.7634 32.3171

3-D FE 21.8993 22.7818 24.0112 24.8581

O7 Present 30.0260 30.0086 30.4100 32.0305

Ref. [30] 29.5524 28.8472 30.5295 34.1152

3-D FE 29.5814 29.6120 30.1386 31.9981

O8 Present 37.6152 38.4286 40.3084 39.7404*

Ref. [30] 37.2420 30.8320 34.8060 45.4330

3-D FE 37.4149 38.1270 39.7678 41.1186

Note: Data with superscript (*) mean the symmetric modes in the thickness direction.
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From Tables 3 to 8, it is shown that the first five differences between the 3-D finite element solutions and the
present solutions are orderly �15.5% (O4 when b ¼ 0.5, g ¼ 1 and a ¼ 451); 9.0% (O1 when b ¼ 2, g ¼ 10 and
a ¼ 451); 6.5% (O4 when b ¼ 2, g ¼ 10 and a ¼ 451); �6.3% (O6 when b ¼ 0.5, g ¼ 1 and a ¼ 151) and �5.2%
(O4 when b ¼ 0.5, g ¼ 1 and a ¼ 301). However, the first five differences between the algebraic polynomial
solutions and the present solutions are orderly 67.5% (O5 when b ¼ 1, g ¼ 2 and a ¼ 451); 58.4% (O8 when
b ¼ 0.5, g ¼ 2.5 and a ¼ 451); 57.9% (O3 when b ¼ 0.5, g ¼ 2.5 and a ¼ 451); 57.5% (O2 when b ¼ 0.5, g ¼ 1
and a ¼ 451) and 51.7% (O7 when b ¼ 0.5, g ¼ 1 and a ¼ 451). It can be seen that all the first five differences
between the algebraic polynomial solutions and the present solutions occur at the skew angle a ¼ 451.
Therefore, it can be concluded that the 3-D finite element solutions are agreement with the present solutions.
However, the differences between the algebraic polynomial solutions and the present solutions are
considerable for plates with large skew angles.

From Tables 3 to 8, one can see that for the cantilevered rectangular plates (a ¼ 01), all results obtained
from the three methods are agreement each other, although the present solutions are, in general, closer to the
3-D finite element solutions. The maximum difference between the 3-D finite element solutions and the present
solutions is 4.7% (O4 when b ¼ 0.5 and g ¼ 1) while the maximum difference between the algebraic
polynomial solutions and the present solutions is 8.4% (O4 when b ¼ 0.5 and g ¼ 2.5). However, with the
increase of the skew angle, the differences between the algebraic polynomial solutions and the present
solutions monotonically and remarkably increase and greatly larger than the differences between the finite
element solutions and the present solutions. It should be mentioned that McGee and Leissa [30] examined the
convergence of the algebraic polynomial solutions for the cantilevered rhombic plate (b ¼ 1) with the skew
angle a ¼ 151. They reported that the algebraic polynomials led to serious round-off errors as the solution
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Table 8

The first eight frequency parameters for skewed, cantilevered thick plates with aspect ratio b ¼ 2 and span-thickness ratio g ¼ 10

Mode Method a ¼ 01 a ¼ 151 a ¼ 301 a ¼ 451

O1 Present 3.3997 3.4640 3.6545 3.9568

Ref. [30] 3.3397 3.3432 3.0183 2.9961

3-D FE 3.4114 3.5002 3.7805 4.3144

O2 Present 13.2935 13.5040 13.7016* 12.4847*

Ref. [30] 12.4593 12.5382 12.7095 11.6690

3-D FE 13.2833 13.5085 13.8810 12.9673

O3 Present 14.4057* 14.2514* 14.2949 16.1251

Ref. [30] 14.3907 14.4765 15.4606 16.0299

3-D FE 14.4521 14.3258 14.4257 16.6212

O4 Present 20.2979 20.9298 22.7865 25.8173

Ref. [30] 19.5960 19.7466 20.6890 23.6116

3-D FE 20.3647 21.1291 23.4390 27.4966

O5 Present 41.9258 41.4907 41.5081 43.8744

Ref. [30] 38.7711 37.5107 35.3326 35.6590

3-D FE 41.9086 41.6010 42.1593 46.0781

O6 Present 52.2346* 50.6208* 48.5529* 46.4501*

Ref. [30] 52.2825 49.9046 51.9786 64.1992

3-D FE 52.3346 50.6122 48.6333 47.2957

O7 Present 53.3858 55.6505 59.3579* 60.6123*

Ref. [30] 52.4692 50.3584 55.3036 68.8087

3-D FE 53.4834 55.9763 59.9545 62.1115

O8 Present 54.8204* 56.7512* 61.5335 68.9504

Ref. [30] 54.8140 54.0790 57.9550 71.5920

3-D FE 54.7376 56.9011 62.7143 72.3215

Note: Data with superscript (*) mean the symmetric modes in the thickness direction.
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determinant sizes became larger than 288 which corresponds to I� J�K ¼ 6� 4� 4. In their subsequent
computations, 288 terms of algebraic polynomials was constantly applied to the computations of cantilevered
skew plates with various skew angles including larger skew angles such as a ¼ 301 and a ¼ 451. The
present study shows that with the increase of the skew angle, the maximum number of terms of the
trial functions, which could provide the stable numerical computation, should monotonically decrease.
Therefore, I� J�K ¼ 6� 4� 4 terms of algebraic polynomials will give the ill-conditioned results for
plates with larger skew angles such as a ¼ 451. This also explains the reason why the first five remarkable
differences between the algebraic polynomial solutions and the present solutions always occur at the skew
angle a ¼ 451.

The 3-D finite element solutions in Tables 3–8 are directly cited from reference [30] where the commercial
software NASTRAN was used to obtain the finite element results. McGee and Leissa [30] investigated the
convergence of the 3-D finite element solutions and pointed that the mesh refinement does not always reduce
the error of the 3-D finite element results and utilization of large number of elements does not necessarily lead
to closer results. The above study indicates that the present method could provide more accurate results than
the finite element method.

Figs. 3–5 give the vibration modes of cantilevered skew plates with the aspect ratio b ¼ 1 and skew
angle a ¼ 301. The first six modes for three different span-thickness ratios g ¼ 2, 5, 20 are presented,
respectively. It is seen from Figs. 3 to 5 that the antisymmetric modes in the thickness direction exhibit the
flexural vibrations while the symmetric modes in the thickness direction exhibit the extending vibrations. With
the increase of the plate thickness, the symmetric modes in the thickness direction go into the low-order
eigenfrequencies.
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Ω1 = 3.1648, A-mode

Ω4 = 9.8317, S-modeΩ3 = 5.7103, A-mode

Ω5 = 11.215, A-mode Ω6 = 12.657, S-mode

Ω2 = 4.4468, S-mode

Fig. 3. The first six modes of cantilevered skew plate with, a ¼ 301. A-mode means antisymmetric mode and S-mode means symmetric

mode.

Ω1 = 3.7388, A-mode Ω2 = 8.0943, A-mode 

Ω3 = 11.059, S-mode Ω4 = 19.697, A-mode 

Ω5 = 21.469, A-mode Ω6 = 24.544, S-mode

Fig. 4. The first six modes of cantilevered skew plate with b ¼ 1.0, g ¼ 5.0, a ¼ 301. A-mode means antisymmetric mode and S-mode

means symmetric mode.
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Ω1 = 3.9057, A-mode Ω2 = 9.2090, A-mode

Ω4 = 25.402, A-modeΩ3 = 24.678, A-mode

Ω5 = 39.875, A-mode Ω6 = 44.092, S-mode

Fig. 5. The first six modes of cantilevered skew plate with b ¼ 1.0, g ¼ 20.0, a ¼ 301. A-mode means antisymmetric mode and S-mode

means symmetric mode.
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5. Conclusions

The 3-D free vibration of cantilevered skew plates with arbitrary thickness has been solved using the Ritz
method. The solution is based on the exact, linear and small strain elasticity theory. The triplicate Chebyshev
polynomial series multiplied by a boundary characteristic function are used as the trial functions. High
accuracy and rapid convergence demonstrate the advantage of using Chebyshev polynomials as the trial
functions. Reliable frequency parameters have been obtained for cantilevered skew plates with various aspect
ratios, span-thickness ratios and skew angles. The comparison study clearly shows that the present solutions
are in agreement with the 3-D finite element solutions for all cases, however in some cases, are inconsistent
with the algebraic polynomial solutions, especially for plates with large skew angles such as a ¼ 451. It can be
concluded that in 3-D vibration analysis of skew thick plates, the numerical stability of using Chebyshev
polynomials as the trial functions is better than that of using algebraic polynomials as the trial functions. The
present results can serve as the benchmark data for the accuracy evaluation of other computational
techniques.
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